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A-OPTIMALITY FOR REGRESSION DESIGNS

N. N. Chan

1. Introduction.

Consider the linear regression model

y -Xa +,

where y is an m x 1 vector of observations, X is an m x n matrix

to be called the design matrix, $ is an n x 1 vector of unknown

parameters, and C is an m x I vector of random variables with mean

the m x 1 zero vector and known covariance matrix A. We assume that

m > n and denote the eigenvalues of A in ascending order of magnitude

by
<1  • . < ... < X1- 2 - " -!n- -

For later use denote the diagonal matrices with diagonal elements

X19 .... X i by Ail i - n and m .

For a given design matrix X of rank n, an unbiased estimate of

the parameter B based on the observation y is the simple least squares

estimate

(X'X)-lx'y ,

whose covariance matrix is given by
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(I) (x'x)-Ix'AX(X'x)-I

: J _ _ _ _ _ _ _ _ _ .... . ._ _ _•



One of the design problems is to choose X from a given experimental

region such that the trace of the matrix in (1) is minimal. This is a

problem in the A-optimal designs of regression experiments and was con-

sidered by Dorogovcev (1971) under the more general setting that the

observations are the realization of stochastic processes. Earlier work

on A-optimal designs was given by Elfving (1952) and Chernoff (1953).

In this paper the experimental region under consideration is taken

to be the set H of all m x n real matrices of rank n whose ith

column has a Euclidean norm not exceeding ci, i 1,...,n, where the

ci are given positive numbers. In section 2, it is shown that for any

matrix X in H the trace of the matrix in (1) has as a lower bound of

n 21 ( \ )2
i=l 1=1

In section 3,a necessary and sufficient condition for the existence of an

X in H to attain the lower bound is derived. For the case in which

all the ci are equal, a partial result was given in Chan and Wong (1981).

Dorogovcev (1971) obtained the lower bound for the special case n = 2

and c = c

It is worth noting that in the regression model if one considers

the best linear unbiased estimate (X'A- X)-X'A-y and its covariance

matrix (X'A X) , by minimizing the trace of the latter for all X in

H, the corresponding optimal design problem has a simple solution, as is

given in Rao (1973, p. 236). On the other hand, if one wishes to minimize

the determinant of (X'A-1 X)-1 , there is the so called D-optimal design
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problem, of which comprehensive reviews can be found in St. John and

Draper (1975) and Kiefer and Galil (1980).

2. An Inequality.

For the regression model and the set H as given in section 1, we

note that in minimizing the trace of the matrix in (1) with respect to

X in H, the matrix A in (1) can be replaced by the diagonal matrix

A without loss of generality, in view of the existence of an orthogonalm

matrix P such that

A ffP'A Pm

and the following equality

(XX)- 1 X'AX(X'X)- = (Y'Y)-Y'A y(Y) 
- 1

m

where Y - PX which is again in H. The following lemma of Fan (1949)

will be required in the proof of our main inequality.

Lemma 1. Let B be a real m x n matrix whose n columns form

an orthonormal set. Then

tr B'AB > tr A
- n

where tr represents the trace operation.

Theorem 1. For any X in H,

trI(IXX)l xIAx(xtx)Ii } > c 2 I)- 2
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Proof. By the Cauchy-Schwarz inequality applied to the trace

inner product tr{X'Y} between two real m x n matrices X and Y,

we have

(2) tr{X'X) x tr{(X'X)- X'A A X(X'X)- } > tr2 {X'AX(XX)-l}

But the trace on the right-hand side is

(3) tr{(X'X) - '1A X(X IX)- ) ,

En
which is not less than Iiff i by Lemma 1 .rn noting that the n columns

of the matrix (X'X)-  are orthonormal. By the definition of the set

H,

n2
(4) trfX'X) < c ci .

Hence the main inequality follows.

3. A-Optimal Designs.

The main result of this work is to obtain a necessary and sufficient
condition on (Xl, .... I and (cl,... c for the existence of a

matrix in H such that the lower bound in Theorem 1 is attained. For

this we need the following lemmas.

Lemma 2. Let D be an n x n real diagonal matrix with diagonal

elements d, < d2 _ ... e dn , and al,...,an be n real numbers such

that a1 < a2 < .. < an and
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n n

i-ai-i[

Then there exists an n x n orthogonal matrix P such that the n

diagonal elements of P'DP are al,...,a n  if and only if

k k
ij a i > il d, k - 1,2,...,n -1

i-i i-i

This lemma is a version of a result by Horn (1954) and a proof is

given by Mirsky (1958). See also Marshall and Olkmn (1979, p. 220).

Lemma 3. Let D be as in Lemma 2 and B be an n x k matrix whose

k columns form an orthonormal set. Arrange the eigenvalues of the k x k

matrix B'DB in ascending order b, < b 2 <.. < bk. Then bi > di,

i l

This is the Poincare separation theorem and can be found for example

in Rao (1973, p. 64).

Theorem 2. Suppose that the positive numbers ci, i = i,...in,

are arranged in ascending order of magnitude and that the smallest eigen-

value XI of the covariance matrix A is positive. Then there is an

X in H such that

tr{(X'X)-Ix'AX(X'x) 1 } - ( c i )  I )
i-I i-i

if and only if
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n k n k
Sc2) - 1  c2 > ) , k- 1,...,n-1
i-i i-i i-i i-i

Proof. Sufficiency: Consider the diagonal matrix A" whose
n

diagonal elements are XkI' i - 1,...,n. By Lemma 2 there exists an

orthogonal matrix P of order n such that the i t h diagonal element of

PIA P is bc, i = 1, ...,n, where

b c 2 c)-( 1
i-i i~l

Denote by X the m x n matrix

where 0 is an (m-n) x n submatrix of zeros. Note that X is of

rank n as X > 0 and that the ith diagonal element of X'X equals

c2 as we have

X'X = b-IP'A Pn

Hence X is a member of the set H. Moreover, for the diagonal matrix

A of order m, we havem

XAmx - b-lP'An0 OA m  A

n n i

Sb P'A P
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and so

trf{(XX)_IX'A X(X'X)_I} trfb(PA P)PA P nPA-p))
m nl n n

= b tr{P'A P)n

=( P )-l( X

i=l imi

The proof for sufficiency is completed by replacing A by A as re-

marked at the beginning of Section 2.

Necessity. Suppose that X, a member of H, is such that the

inequality in Theorem I becomes an equality. Then the three inequalities

in the proof of Theorem I reduce to equalities. First, note that the ith

2diagonal element of the matrix X'X equals cel, i = 1,...,n, because

it cannot exceed c2 (as X is in H) and from (4)

ii

tr fX'X} = 2
i=1

By Lemma 2, it is then enough to show that X 1 " are the eigen-
1'" n

values of the n x n matrix bX'X. For this, note that the Cauchy-Schwarz

inequality (2) becoming an equality implies that there is a nonzero real

number d such that

X - dA X(X'x) -

So we have

X'X - dx'A X(X'X) -

7



The equality corresponding to (3) then implies that

Xi = trfXIA 'X(XIX)ll)

i~-l

(5) = d- trfX'X)

I n 2
= d c i

i=l1

Therefore, d = b- , and so

bX'X = XA X(X'X) -

It remains to show that the n x n matrix

(6) (X'X)- XA X(XX)
-

has x as its eigenvalues. In fact, by replacing A by A

n

and using Lemma 3, we see that the ith smallest eigenvalue of the matrix

in (6) is not less than Xi, i = 1,...,n, and, in view of the first

equality in (5), must be equal to Xi' completing the proof.

Acknowledgement. I am thankful to Professor T. W. Anderson for
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